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A common problem in multi-layer shear flows, especially from the perspective of
process engineering, is the occurrence of interfacial instabilities. Here we show how
multi-layer duct flows can in fact be made nonlinearly stable, by using a suitable
lubricating fluid. First we show how interfacial instabilities may be eliminated
through the introduction of a yield stress fluid as the lubricant and by preserving an
unyielded layer adjacent to the interface. Second we show how to treat the nonlinear
stability of a two-layer flow, allowing finite motion of the domains. We focus on the
simplest practically interesting case of visco-plastically lubricated viscous shear flow:
a core–annular pipe flow consisting of a central core of Newtonian fluid surrounded
by a Bingham fluid. We demonstrate that this flow can be nonlinearly stable at
significant Reynolds numbers and produce stability bounds. Our analysis can be
straightforwardly generalized to other flows in this class.

1. Introduction
A principal motivation for studying instabilities of multi-layer shear flows is their

industrial relevance. Two broad application areas are the following.
(i) Co-extrusion processes: A co-extrusion operation essentially consists of combi-

ning several melt streams in a feedblock, from where the combined melt stream
flows to the die and the layers take their final dimensions. Co-extrusion processes
are extensively used in the production of bilayer and multi-layer films, sheets and
pipes in the plastics industry, the concentric coating of two or more polymers and the
production of conjugate fibres in the fibre industry. Interest in multi-layer extrusion
has also grown due to its potential for producing composite products with improved
material properties.

(ii) Lubricated pipelining: There is a tendency for two immiscible fluids to arrange
themselves so that the low-viscosity constituent is in the region of high shear,
i.e. typically closest to the wall in a duct flow. Thus, it appears possible to produce
a beneficial effect in any flow of a very viscous liquid by introducing small amounts
of a less viscous lubricating fluid. Such processes are used for example where a heavy

† Author to whom correspondence should be addressed.
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Figure 1. (a) A visco-plastically lubricated pipe flow. (b) Cross-section of the flow in the
axisymmetric case, with Ω1 (Newtonian fluid) lubricated by Ω2 (Bingham fluid). (c) Schematic
of the type of basic velocity profiles considered, with reduced rate of strain in the Newtonian
fluid and an unyielded plug zone adjacent to the interface in the lubricating fluid.

crude oil is transported along pipelines with the addition of a small amount of water.
Similar methods are used in coal–water slurry transport.

Particularly in co-extrusion operations, but also in other multi-layer flows, the rate
of production (i.e. the flow rate), is limited by flow instabilities and especially by
instabilities at the interfaces between adjacent layers. These instabilities can result
in high scrap rates, in an economically infeasible process, or in final products with
substandard mechanical, optical or barrier properties.

In this paper we focus on the stability of multi-layer duct flows in which the
lubricating outer layer is a visco-plastic fluid and where both fluids are inelastic. Only
iso-density fluids are considered. The basic flow we consider is a Poiseuille flow, driven
by an axial pressure gradient with shear stress increasing in magnitude (linearly) from
the channel centre outwards towards the walls. If we were to consider two Newtonian
fluids in the configuration of figure 1(a, b), the flow would be linearly unstable at
low Reynolds numbers. There have been many studies of such viscosity-stratified
flows. The earliest is probably the classical study of Yih (1967). Later work includes
studies of multi-layer Couette, Poiseuille and Couette–Poiseuille flows of Newtonian
fluids, e.g. Hickox (1971), Hooper & Boyd (1987), Yiantsos & Higgins (1988). A fairly
extensive review of this literature is given in Joseph & Renardy (1993), which also
includes the many contributions of these authors to the study of lubricated pipelining
flows. Broadly speaking, the linear stability of immiscible iso-density flows requires a
sufficiently large surface tension and that the lubricating fluid be less viscous. Surface
tension stabilizes short-wavelength interfacial modes and the viscosity ratio tends to
stabilize long-wavelength instabilities.

Surprisingly, in this paper we establish nonlinear stability results for the configu-
ration of figure 1(a, b), which are valid at moderate Reynolds numbers. For clarity
we focus on a pipe flow in which the inner fluid is Newtonian and the outer fluid
is Bingham, although our method of analysis is generally applicable a wide class of
flows. The key to our results is as follows. A Bingham fluid behaves as a rigid solid in
regions of the flow where the shear stress is below a critical yield stress value. Thus,
since the shear stress increases linearly outwards in a duct flow, for a sufficiently large
yield stress the Bingham fluid remains unyielded in a region that surrounds the inner
fluid, see figure 1(c). The shear stress attains the yield stress only at the yield surface,
which lies within the lubricating layer at some finite distance from the interface.
The consequence of the above configuration is that, at the interface, the shear stress
is below the yield stress by a finite amount. An infinitesimal (linear) perturbation



Visco-plastic lubrication of viscous shear flows 119

produces only an infinitesimal shear stress perturbation and hence is unable to break
the unyielded region surrounding the interface. Thus, the key physical feature of
lubricating with a yield stress fluid in the way described is that the interface cannot
deform. Interfacial instabilities are therefore wholly eliminated. The above fact was
first recognized in Frigaard (2001), where linear stability bounds were produced for
visco-plastically lubricated multi-layer flows (of type similar to figure 1(c), and indeed
critical Reynolds numbers were found to exceed those of the Newtonian problem.
Here we consider nonlinear stability, which is clearly of interest for any practical flow
situation.

In outline, our approach is as follows. First we consider only finite perturbations
in which the magnitude of the shear stress perturbation is limited. This allows us to
consider that unyielded Bingham fluid persists in a finite annular ring around the
interface. Thus, again, the interface cannot deform. In such a situation, we are able
to use energy stability methods. The approach follows that of e.g. Joseph (1976),
with some adaptation for the yield stress, as developed by Nouar & Frigaard (2001).
However, two cases must be considered: (i) that in which the central fluid region and
surrounding plug does not translate within the cross-section of figure 1(b); (ii) where
translational motion is possible.

Case (i) occurs when stress perturbations are close to being axisymmetric. This simp-
ler case (see § 3) allows a clear exposition of the nonlinear stability method. We produce
Reynolds number bounds for exponential decay of the L2 norm of the perturbation.
Case (ii) is clearly more challenging, and general (see § 4). We are again able to show
exponential decay under conditions on the Reynolds number, but now the pertur-
bation is not about the axisymmetric flow of figure 1, rather about a flow which is
close to that in figure 1, but asymmetric (i.e. the central region in figure 1(b) can be
translated a small finite amount). We obtain bounds for the departure from symmetry.

Apart from Newtonian fluids, a number of authors have considered the linear
stability of multi-layer flows of other inelastic non-Newtonian fluids, e.g. power-law
fluids are treated extensively in Waters (1983), Waters & Keeley (1987), Khomani
(1990), Su & Khomani (1991), Carreau–Yasuda and Bingham-like fluids are treated
in Pinarbasi & Liakopoulos (1995). In brief, these results are qualitatively similar to
those found for Newtonian fluids, i.e. linear interfacial instabilities arise at small-to-
moderate Reynolds numbers. Importantly, these studies do not consider fluids with
a yield stress.† Explanations of the physical mechanisms that govern this type of
instability for Newtonian fluids have been offered by Hinch (1984), Charru (1998),
Charru & Hinch (2000), and we believe these explanations can be largely extended to
purely viscous generalized Newtonian fluids. In simple terms, sufficiently close to the
fluid–fluid interface, the non-Newtonian (nonlinear) character of any purely viscous
generalized Newtonian fluid is simply not recognized, i.e. the dominant feature at the
interface is a discontinuity in a finite constant viscosity between two fluids.

2. Model equations
In this paper we consider a multi-layer flow of two generalized Newtonian fluids

along an infinite circular pipe. We focus on the case where the pipe cross-section is
separated into two distinct fluid domains, with fluid 2 providing a lubricating layer for

† Pinarbasi & Liakopoulos (1995) do not consider a Bingham fluid with a yield stress, but instead
they choose to regularize their rheological model, so that the effective viscosity attains a (large)
Newtonian limit at zero shear rate. This modified constitutive model is then qualitatively similar to
the Carreau–Yasuda model that is also studied in Pinarbasi & Liakopoulos (1995).
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fluid 1, i.e. the cross-sectional domain occupied by fluid 1 is completely surrounded by
fluid 2, which abuts the wall of the pipe, see figure 1. It will be assumed throughout
that fluid 1 is a Newtonian fluid and fluid 2 is a Bingham fluid, although our analysis
can be generalized without too much trouble to an arbitrary duct with an arbitrary
generalized Newtonian fluid on the inside (fluid 1), lubricated by any generalized
Newtonian fluid that has a yield stress, (fluid 2). For simplicity, we consider an
arbitrary but finite length L̂ of the pipe and later will consider nonlinear stability of
the basic flows to perturbations that are L̂-periodic with respect to the axial direction.

We denote the fluid domain by Ω and the two individual fluid domains by Ω1 and
Ω2, respectively. The pipe and coordinates are aligned such that the ẑ-axis corresponds
to the pipe axis. Fluid 1 has viscosity µ̂[1] and fluid 2 is characterized rheologically by
its yield stress τ̂

[2]
yield and plastic viscosity µ̂[2]. It is assumed that both fluids have the

same density ρ̂ and surface tension is neglected. The total flow rate along the pipe is
Q̂ and the pipe radius is R̂, thus defining the mean axial velocity: Û 0 = Q̂/πR̂2. The
pressure is denoted p̂(x̂, t̂), û(x̂, t̂) is the velocity, τ̂ij

[k] denotes the deviatoric stress
tensor in fluid k, and ĝi is the gravitational acceleration in direction i.

The Navier–Stokes equations are made dimensionless with the following scaling:

x =
x̂

R̂
, t =

t̂ Û 0

R̂
, u =

û

Û 0

, p =
p̂

ρ̂Û 0

2
, τij =

τ̂ij R̂

µ̂[2]Û 0

, fi =
ĝiR̂

Û 0

2
, (2.1)

leading to

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re[2]

∂τij
[k]

∂xj

+ fi, k = 1, 2, (2.2)

0 =
∂ui

∂xi

, (2.3)

in each fluid domain. Constitutive laws for the two fluids are

τ
[1]
ij = mγ̇ij , (2.4)

γ̇ (u) = 0 ⇐⇒ τ [2](u) � B, (2.5)

τ
[2]
ij (u) =

[
1 +

B

γ̇ (u)

]
γ̇ij (u) ⇐⇒ τ [2](u) >B, (2.6)

where

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

,

γ̇ (u) =

[
1

2

3∑
i,j=1

[γ̇ij (u)]2

]1/2

, τ [2](u) =

[
1

2

3∑
i,j=1

[τ [2]
ij (u)]2

]1/2

. (2.7)

The three dimensionless parameters appearing above are defined by

m =
µ̂[1]

µ̂[2]
, Re[2] =

ρ̂R̂Û 0

µ̂[2]
, B =

τ̂
[2]
yield R̂

Û 0µ̂[2]
, (2.8)

and are the viscosity ratio, fluid 2 Reynolds number and Bingham number, respect-
ively. The fluid 1 Reynolds number Re[1] may be simply defined as Re[1] = mRe[2].
Boundary conditions are

u = 0, x2 + y2 = 1, (2.9)

u(x, y, z, t) = u(x, y, z + L, t). (2.10)
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Figure 2. Schematic of the unyielded plug region.

2.1. Interface and plug motion

Across the interface (denoted Γi with unit normal n), velocity and stress are
continuous:

u continuous on Γi, (2.11)(
−pδij +

1

Re[2]
τ

[k]
ij

)
nj continuous on Γi, (2.12)

where δij is the Kronecker delta.
To complete the classical formulation, (2.2)–(2.6), (2.9)–(2.12), we need consider

how to determine the fluid motion within an unyielded region, say Ωp(t) ⊆ Ω2(t).
Although the momentum equations are satisfied in Ωp(t), because (2.5) holds in such
a plug region, the stresses are indeterminate. Kinematically, (2.5) implies that a plug
moves as a rigid solid. However, a plug is not exactly a rigid solid, since mass may
either enter or leave the plug through a yield surface. Determining the yield surfaces
and their movement represent the key difficulties in dealing with visco-plastic fluid
flows in a classical formulation.

For illustration and to pre-empt our later analysis, let us for the moment suppose
that the domain Ω1 is surrounded by an annular region Ωp(t) of unyielded Bingham
fluid. The plug is bounded by two surfaces: the interface Γi and an outer yield surface,
say Γy , see figure 2. The outward normal to each surface is denoted by n and we
suppose that the surfaces of the plug move instantaneously in the direction of n with
speed up . The interface Γi is a material surface and consequently

up = ujnj , x ∈ Γi, (2.13)

which is effectively the kinematic equation for the interface motion. In contrast, the
yield surface Γy is not a material surface. The speed of propagation of the yield
surface in the normal direction, up , is determined wholly by changes in the deviatoric

stress field, τ
[2]
ij , which itself is fully determined only outside of the plug.

As with any rigid body motion, the velocity within the plug can be decomposed
instantaneously into a linear motion and a rotation about a point. If we suppose (as
we shall do later) that the annular plug region persists around Ω1(t), then there can
be no deformation of the interface and Ω1(t) remains a uniform circular cylinder of
radius ri . We let xc(t) = (xc(t), yc(t), zc(t)) denote a point on the axis of this cylinder,
i.e. so that the interface position at time t is given by

r2
i = x2

c (t) + y2
c (t).
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The plug velocity is then described instantaneously by the linear motion of the
point xc(t), which moves with velocity uc(t), and by a rotation ωc(t) about xc(t),
i.e. u = uc(t) + (x − xc) ∧ ωc(t), or in component form

ui = uc,i + εijk(xj − xc,j )ωc,k,

where εijk is the permutation symbol. The six unknowns: uc,i, ωc,i , i = 1, 2, 3, must
be determined from the six equations corresponding to conservation of linear and
angular momentum. These equations are (for i = 1, 2, 3)

0 =

∫
Ωp(t)

(u̇c,i + εijk(xj − xc,j )ω̇c,k) dx −
∫

Γy (t)

σ
[2]
ij nj ds −

∫
Γi (t)

σ
[1]
ij nj ds

+

∫
Γy (t)

(uc,i + εijk(xj − xc,j )ωc,k)[(uc,l + εlmn(xm − xc,m)ωc,n)nl − up] ds

−
∫

Ωp(t)

fi dx, (2.14)

0 =

∫
Ωp(t)

εijk[xj − xc,j ][u̇c,k + εklm(xl − xc,l)ω̇c,m] dx −
∫

Ωp(t)

εijk(xj − xc,j )fk dx

−
∫

Γy (t)

εijk(xj − xc,j )σ
[2]
kl nl ds −

∫
Γi (t)

εijk(xj − xc,j )σ
[2]
kl nl ds

+

∫
Γy (t)

εijk[xj − xc,j ][uc,k + εklm(xl − xc,l)ωc,m]

× [(uc,l + εlmn(xm − xc,m)ωc,n)nl − up] ds. (2.15)

In (2.14) and (2.15) we have denoted the time derivatives of uc,i, ωc,i by u̇c,i , ω̇c,i , i =

1, 2, 3, and the stress tensors, σ
[k]
ij are given by

σ
[k]
ij = −pδij +

1

Re[2]
τ

[k]
ij .

We have used continuity of the traction on Γi to replace σ
[2]
ij with σ

[1]
ij . The surface

integrals involving σ
[k]
ij are understood to mean the limits of these integrals from the

Newtonian fluid side and the yielded fluid region, i.e. from whichever side the stress
is determinate.

The classical problem consists of (2.2)–(2.6) with (2.14) and (2.15), associated
boundary conditions (2.2)–(2.6) and similar continuity conditions at the yield surface,
i.e. the velocity and traction are continuous across a yield surface. Equations (2.14)
and (2.15) constitute six nonlinear ordinary integro-differential equations† for
uc,i, ωc,i , i = 1, 2, 3, which are coupled to the flow outside the plug, through
continuity of the traction and velocity vectors. This classical formulation is clearly
extremely complex. To our knowledge, no solutions of such problems have been
computed in multi-dimensions, without symmetry assumptions, even for a single
fluid, and very little is known about the regularity of classical solutions to this
problem. To avoid the inherent complexity of the classical formulation, it has been
common to adopt a variational formulation, and to compute solutions using either
regularization methods or an augmented Lagrangian approach.

† Note that since xc,i , i = 1, 2, 3 are obtained by integrating uc,i , i = 1, 2, 3, formally (2.14) and
(2.15) are integro-differential equations.
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Figure 3. Examples of basic velocity profiles W (r) illustrating the three different cases (r = ry

and r = ri are marked with solid vertical lines): (a) case 1, B = 30, ri = 0.4, m = 2; (b) case
2, B = 5, ri = 0.6, m = 5; (c) case 3, B = 50, ri = 0.4, m = 0.3 (here ry = 1.0666).

3. Stationary Ω1

In general, we consider conditional nonlinear stability, for which the finite stress
perturbations are too weak to break the plug around Ω1. Thus, the interface Γi

does not deform and the shape of Ω1 remains unchanged. In § 4 we shall allow Ω1 to
translate and rotate in the (x, y)-plane of figure 1(b). Since the pipe is assumed infinite
and the perturbations are periodic in z, the above are the only kinematically possible
motions of a non-deformed Ω1. However, first we consider the simpler problem in
which the domain Ω1 does not move in the (x, y)-plane. For simplicity, we also impose
that there is no perturbation of the plug region in the z-direction.

Since the interface is a material surface, the above restrictions are equivalent to
demanding that uc,i = ωc,i = 0, i = 1, 2, 3 are the solutions to (2.14) and (2.15), i.e.
the plug region neither translates nor rotates. This is certainly true if we consider
a linear perturbation of the axisymmetric basic steady flow of figure 1(c). This
is because the normal modes, which would appear in boundary integrals of the
linearized versions of (2.14) or (2.15), are integrated over an axial or azimuthal
length, over which they vanish due to periodicity. An explicit example of this type
is shown in detail in Frigaard, Howison & Sobey (1994), for a linear perturbation
of plane Poiseuille flow. Thus, our assumption of stationary Ω1 is satisfied by linear
perturbations. For nonlinear perturbations, stationary Ω1 results when there is zero
net contribution to the moments exerted on the plug boundaries, which arises formally
when axisymmetry of the stresses is assumed. This might be achieved for even a fully
nonlinear perturbation, for example by the introduction of swirl into the flow, or by
other means. Thus, our simplified problem is not wholly impractical.

3.1. Basic flow

The basic flow that we consider here is that in which a circular region of fluid 1 is
surrounded concentrically by an annulus of fluid 2. In fact, three different types of
basic flow can be found according to whether or not the Bingham fluid moves and
whether or not the Bingham fluid is yielded at the interface. We illustrate the solution
types in figure 3.

Assuming cylindrical coordinates (r, θ, z), the axisymmetric solution is u =
(0, 0, W (r)), with interface at r = ri . We denote by r = ry the yield surface position,
given by ry = 2B/G, where G = −Re[2]∂p/∂z > 0, and we have included the body
force terms fi into a modified pressure field.
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Case 1: ry ∈ (ri, 1), in which case there exists an unyielded plug surrounding the
Newtonian region. This is the case of primary interest. The solution is given by

W (r) =




B

2ry

[
1

m

(
r2
i − r2

)
+ (1 − ry)

2

]
, 0 � r � ri,

B

2ry

(1 − ry)
2, ri < r � ry,

B

2ry

[(1 − ry)
2 − (r − ry)

2], ry < r � 1,

(3.1)

where ry ∈ (ri, 1) is found as the root of the following quartic:

0 = (ry)
4 − 4ry

(
1 +

3

B

)
+ 3

(
1 +

r4
i

m

)
, (3.2)

which follows from a constraint on the flow rate, due to scaling with the mean
velocity.

Case 2: ry ∈ [0, ri), in which case the Bingham fluid region is entirely yielded. The
solution is given by

W (r) =




B

2ry

[
1

m

(
r2
i − r2

)
+ (1 − ry)

2 − (ri − ry)
2

]
, 0 � r � ri,

B

2ry

[(1 − ry)
2 − (r − ry)

2], ri < r � 1,

(3.3)

with ry determined from

0 = ry

(
4r3

i − 4 − 12

B

)
+ 3

(
1 +

r4
i

m
− r4

i

)
. (3.4)

Case 3: ry ∈ [1, ∞), in which case the Bingham fluid is wholly unyielded and does
not flow. The solution is

W (r) =




B

2ry

[
1

m

(
r2
i − r2

)]
, 0 � r � ri,

0, ri < r � 1,

(3.5)

with ry simply determined by

0 = 4rym − Br4
i . (3.6)

Solutions of this type, with a static wall layer, are the subject of ongoing investigation,
see e.g. Allouche, Frigaard & Sona (2000), Frigaard, Leimgruber & Scherzer (2003),
but are not of direct concern here.

In cases 2 and 3, the physical meaning of ry is not as a yield surface, since ry lies
outside the Bingham fluid domain. The boundary of case 2 in the three-dimensional
(ri, B, m)-parameter space is where

B <
12ri

r4
i (3/m + 1) − 4ri + 3

. (3.7)

The boundary of case 3 is where

B >
4m

r4
i

. (3.8)
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Figure 4. Parameter space in (ri, B,m) for the three different basic solution types:
(a) variations with B and m, for ri = 0.5; (b) variations with B and ri , for m = 5.

Figure 4 illustrates the dependence of the type of solution on the parameters ri , B and
m. Note from (3.7) that the boundaries between fully yielded and partially yielded
cases satisfy the following asymptotic limits:

B �
4m

r3
i

as m → 0, (3.9)

B �
12ri

r4
i − 4ri + 3

as m → ∞, (3.10)

B � 4ri as ri → 0, (3.11)

B �
4mri

1 − 4(1 − ri)
as ri → 1. (3.12)

Figure 4(a) shows typical variations with B and m, for fixed ri = 0.5. Figure 4(b)
shows typical variations with B and ri for fixed m = 5. The primary focus of this
paper is on the stability of basic solutions of type, case 1. It can be seen from figure 4
that such solutions are not hard to find in the (ri, B, m)-parameter space.

3.2. The Reynolds–Orr equation

We consider nonlinear stability of (3.1) via the classical approach, using as a main tool
the Reynolds–Orr equation, see e.g. Drazin & Reid (1981). The perturbed velocity
and pressure fields are assumed periodic in the axial direction, and are denoted

U + u = (0, 0, W ) + (u, v, w), P + p = P + p,

where W = W (r) is given by (3.1) and P = P (z) is linear in z. The gradient of P is
defined from ry . We shall employ the notation (ur, uθ , w) to refer to the velocity field
in cylindrical coordinates. Throughout, we make the following two assumptions:

(i) The Newtonian domain Ω1 remains stationary (see the earlier discussion).
(ii) The deviatoric stress of the nonlinear perturbation satisfies a bound of form∣∣τij

[k](U + u) − τij
[k](U)

∣∣ < a, k = 1, 2; i, j = 1, 2, 3, (3.13)

for some a > 0. The choice of a sufficiently small (but finite) bound a is made, so that
we are able to ensure that the perturbed flow retains an unyielded plug region about
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Ω1. To see that this is feasible, note that the unperturbed stress varies linearly with r:

τ [2](U)(r) =
∣∣τrz

[2](U)
∣∣(r) =

r

ry

B.

Thus, from (3.13) we see that

τ [2](U + u) �

[(
a +

r

ry

B

)2

+
7

2
a2

]1/2

,

and for r ∈ (ri, ry) the perturbed flow is unyielded in (ri, r) provided that

a <amax(ri, B, m) =
2B

9

([
9

2
− 7

2

(
r

ry

)2
]1/2

− r

ry

)
. (3.14)

We will relax the first of the above assumptions in § 4, but we will retain a form of the
second assumption. This second assumption is used in stability problems involving
yield stress fluids and its purpose is to ensure that a region of unyielded fluid persists
under the action of the perturbation. For linear stability, a becomes infinitesimal and
(3.13) has the physical implication that a finite plug region is not destroyed by an
infinitesimal perturbation, which allows one to consider a linear perturbation of the
yield surface; see e.g. Frigaard et al. (1994), Frigaard (2001). For nonlinear stability,
(3.13) makes the stability bounds conditional, but these are not necessarily weakly
nonlinear perturbations; see e.g. Nouar & Frigaard (2001).

The equations of motion in each (now fixed) domain, Ωk : k = 1, 2, are

0 = −∂P

∂xi

+
1

Re[2]

∂

∂xj

τij
[k](U), (3.15)

0 =
∂Ui

∂xi

, (3.16)[
∂

∂t
+ (Uj + uj )

∂

∂xj

]
(Ui + ui) = − ∂

∂xi

(P + p) +
1

Re[2]

∂

∂xj

τij
[k](U + u), (3.17)

0 =
∂

∂xi

(Ui + ui). (3.18)

Note that Uj∂Ui/∂xj = 0. We subtract (3.15) from (3.17), multiply by ui , and integrate
over the individual fluid domains to give∫

Ωk

ui

D

Dt
ui dx = −

∫
Ωk

[
uj

∂W

∂xj

]
w dx − 1

Re[2]

∫
Ωk

∂ui

∂xj

[
τij

[k](U + u) − τij
[k](U)

]
dx

+

∫
∂Ωk

ui

[
−p +

1

Re[2]

[
τ

[k]
ij (U + u) − τ

[k]
ij (U)

]]
n

[k]
i ds, (3.19)

where we have used the divergence theorem to derive the last term, n[k], denoting the
outward normal to the boundary ∂Ωk of Ωk . We now sum the two fluid domains
in (3.19). Note that all the boundary integrals vanish, through a combination of:
(i) boundary conditions at the wall, (ii) periodicity at the ends of the domain
considered, (iii) continuity of velocity and traction vectors at the interface. Thus,
finally we have

d

dt

∑
k

∫
Ωk

u2
i

2
dx = −

∑
k

∫
Ωk

ur

∂W

∂r
w +

1

Re[2]

∂ui

∂xj

[
τij

[k](U + u) − τij
[k](U)

]
dx, (3.20)
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which is the Reynolds–Orr equation for the evolution of the kinetic energy of the
velocity perturbation u. We now proceed to bound the inertial terms on the right-hand
side of (3.20) by the dissipative terms.

3.2.1. The Newtonian fluid region, Ω1

We note that the perturbed velocity field satisfies u = 0 at the interface Γi , where
r = ri . For such velocity fields, substituting from (3.1) for W (r), the terms on the
right-hand side of (3.20) become

[Inertia] + [Dissipation] =
B

mry

∫
Ω1

rurw dx − m

Re[2]

∫
Ω1

[
∂ui

∂xj

]2

dx. (3.21)

We now write ∫
Ω1

rurw dx � ΛN

∫
Ω1

[
∂ui

∂xj

]2

dx, (3.22)

where

ΛN ≡ sup
ũ∈V̄N,0

∫
Ω1

rũr w̃ dx

∫
Ω1

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

. (3.23)

The test space V̄N,0, above, is the closure of VN,0, with respect to the [H 1(Ω1)]
3 norm.

The space VN,0 consists of functions that satisfy the following conditions:
(a) ũ ∈ C∞(Ω1),
(b) ũ is solenoidal, i.e. ∂ũj /∂xj = 0,
(c) ũ = 0 on Γi ,
(d) ũ is periodic in z.

By the simple mapping: x = ri x̃, we can transform (3.23) into an equivalent problem
on the unit cylinder. This problem has been solved by Joseph & Carmi (1969), in
their classical work on absolute stability of Hagen–Poiseuille flow. Using Joseph &
Carmi’s solution we have ∫

Ω1

rurw dx �
r3
i

RJ

∫
Ω1

[
∂ui

∂xj

]2

dx, (3.24)

where RJ = 81.49, i.e. ΛN � r3
i /RJ .

3.2.2. The Bingham fluid region, Ω2

Following the analysis in Nouar & Frigaard (2001), substituting for W (r), and by
considering pointwise the integrand in the dissipative term on the right-hand side of
(3.20), we may write

[Inertia] + [Dissipation] = −
∫

Ω2

ur

∂W

∂r
w +

1

Re[2]

∂ui

∂xj

[
τij

[2](U + u) − τij
[2](U)

]
dx,

�
B

ry

∫
Ω2: r�ry

(r − ry)urw dx − 1

Re[2]

∫
Ω2

γ̇ (u)2 dx. (3.25)

Condition (3.13), with a selected to satisfy (3.14), guarantees that there will be an
unyielded plug region surrounding the Newtonian region in the perturbed flow. Thus,
we may assume the existence of some thickness, h = h(ri, B, m) > 0, such that the
perturbed flow remains unyielded for r ∈ (ri, ri + h). We define Ω2,p to be this plug
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region:

Ω2,p = {x : r ∈ (ri, ri + h)}. (3.26)

Note that both terms in (3.25) will have zero contribution within Ω2,p . Thus, in
considering the domain Ω2|Ω2,p , at the boundary with Ω2,p we have both γ̇ij (u) = 0
and u = 0 (since here we have assumed stationary domains). Thus, we can write
(3.25) as

[l.h.s. (3.25)] �
B

ry

∫
Ω2|Ω2,p

[r − (ri + h) + g(r)]urw dx − 1

Re[2]

∫
Ω2|Ω2,p

[
∂ui

∂xj

]2

dx,

(3.27)

where g(r) is defined by

g(r) =

{
ri + h − ry, r > ry,

ri + h − r, r ∈ [ri + h, ry].
(3.28)

We bound the two parts of the inertial term separately:

[Inertia] �
B

ry

[ΛB + (ry − ri − h)ΛC]

∫
Ω2|Ω2,p

[
∂ui

∂xj

]2

dx, (3.29)

where

(ΛB, ΛC) ≡ sup
ũ∈V̄B,0




∫
Ω2|Ω2,p

[r − (ri + h)]ũr w̃ dx

∫
Ω2|Ω2,p

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

,

∫
Ω2|Ω2,p

|ũr w̃| dx

∫
Ω2|Ω2,p

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx


 . (3.30)

The test space V̄B,0, above, is the closure of VB,0, with respect to the [H 1(Ω2|Ω2,p)]3

norm, where VB,0 contains functions satisfying
(a) ũ ∈ C∞(Ω2|Ω2,p),
(b) ũ is solenoidal, i.e. ∂ũj /∂xj = 0,
(c) ũ = 0 on the walls of the pipe,
(d) ũ is periodic in z,
(e) γ̇ij (ũ) = 0 at the boundary with Ω2,p ,
(f) ũ = 0 at the boundary with Ω2,p .
Although we can find the constants ΛB and ΛC by solving appropriate eigenvalue

problems, we instead simply search for simple analytical upper bounds for ΛB and
ΛC . These upper bounds will correspond to lower bounds on the Reynolds numbers
required for stability, i.e. the actual stability will be better than the bounds we present.
To this end, we introduce the transformation

z = z̃[1 − (ri + h)], r − (ri + h) = r̃[1 − (ri + h)].

We map functions in VB,0 onto the unit cylinder r̃ ∈ [0, 1], say Ω̃ . By virtue of
conditions (e) and (f ), each function that we map onto Ω̃ will be continuous and
differentiable at r̃ = 0. We now bound above, by relaxing conditions (e) and (f ) and
considering instead ¯̃V B,0, the closure of ṼB,0, which is the space of functions on Ω̃

satisfying
(a) ũ ∈ C∞(Ω̃),
(b) ũ is solenoidal,
(c) ũ = 0 at r̃ = 1,
(d) ũ is periodic in z̃.
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Thus, we have

(ΛB, ΛC) � sup
ũ∈ ¯̃V B,0


[1 − (ri + h)]3

∫
Ω̃

r̃ ũr w̃ dx̃∫
Ω̃

∣∣∣∣ ∂ũi

∂x̃j

∣∣∣∣
2

dx̃

, [1 − (ri + h)]2

∫
Ω̃

|ũr w̃| dx̃∫
Ω̃

∣∣∣∣ ∂ũi

∂x̃j

∣∣∣∣
2

dx̃




=

(
[1 − (ri + h)]3

RJ

,
[1 − (ri + h)]2

RM

)
, (3.31)

where RJ is again Joseph & Carmi’s constant, and RM is another constant independent
of the problem parameters. It is obvious that RM <RJ and we can easily derive the
estimate RM � 5.78319, following the procedure in § 4.3.5. Since this constant is not
used explicitly in what follows, we have not attempted a more accurate evaluation.

3.3. Stability bounds

Combining the above bounds, we have straightforwardly

1

2

D

Dt

∫
Ω

u2 dx �

(
B[ΛB + (ry − ri − h)ΛC]

ry

− 1

Re[2]

) ∫
Ω2

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx

+

(
BΛN

mry

− m

Re[2]

)∫
Ω1

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx. (3.32)

We suppose that the following condition holds:

Re[2] < min

{
ry

B[ΛB + (ry − ri − h)ΛC]
,

rym
2

BΛN

}
. (3.33)

We can bound (3.32) above as follows:

1

2

d

dt

∫
Ω

u2
i

2
dx � −λcP

∫
Ω

u2 dx, (3.34)

where

λ = min

{(
1

Re[2]
− B[ΛB + (ry − ri − h)ΛC]

ry

)
,

(
m

Re[2]
− BΛN

mry

)}
(3.35)

and where cP is the relevant constant from the Poincaré inequality. Hence, the
following energy stability bound holds for the exponential decay of ‖u‖2

L2(Ω):

‖u‖2
L2(Ω)(t) � ‖u‖2

L2(Ω)(0) exp−2cP λt . (3.36)

In order to explore (3.33), we insert the bounds on (ΛN, ΛB, ΛC) from (3.24)
and (3.31). By setting r = ri + h in (3.14), and reducing amax(ri, B, m) → 0 we also
have ri + h → ry . Thus, by selection of an appropriate amax(ri, B, m) we can take
(ry − ri − h) as small as we like (obviously this also makes our conditional stress
bound a <amax(ri, B, m) weaker). For simplicity we now select amax(ri, B, m) so that
we can choose h to satisfy

ry − ri − h = (1 − ri − h)
RM

RJ

< 1,
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Figure 5. Exploration of the approximate bound (3.38) for nonlinear stability, Re
[2]
c .

variations with B and m: (a) ri = 0.5, (b) ri = 0.7.

so that the two bounds in (3.31) coincide. We find that the flow is conditionally
nonlinearly stable for

Re[2] < 81.49 min

{
m2ry

Br3
i

,
ry

2B(1 − ri − h)3

}
, (3.37)

which is simpler to analyse. Assuming as above that amax(ri, B, m) is small, we have
that ri + h ≈ ry , and thus we explore the approximate bound

Re[2] � Re[2]
c = 81.49

ry

B
min

{
m2

r3
i

,
1

2(1 − ry)3

}
, (3.38)

which depends only on (B, ri, m), i.e. the same parameters as the basic flow. We plot
the stability limit (3.38) in figure 5 for various values of viscosity ratio m and different
ri . For increasing m and at moderate values of B , we are clearly able to achieve
nonlinear stability at moderately large values of Re[2].

Figure 5 is best understood in the context of transitions the basic flow solutions.
Certainly, some of the features shown in figure 5 are physically intuitive. For m > 1
the Newtonian fluid is more viscous than the lubricating Bingham fluid and thus we
observe that either increasing the viscosity ratio m further or increasing the amount
of Newtonian fluid (i.e. ri) both increase the stability of the flow. Note that the total
flow rate is fixed.

The variation with B appears peculiar: first the stability bounds increase, then
decrease. The decrease is certainly counter-intuitive, contradicts linear stability
behaviour found in Frigaard (2001), and requires some explanation. At small B

we generally have a fully yielded (case 2) basic flow, see figure 4, and the above
analysis is anyway invalid. As B increases we have transition to case 1 solutions,
where Ω1 is surrounded by unyielded fluid and our results are valid. Further increases
in B result in the yielded fluid region narrowing and an increase in the second
term in (3.38), which is the active bound. Thus, we see the expected increase in
stability with B . The second term in (3.38) approaches infinity as B increases. Thus,
at some point the first term in (3.38) becomes active (at this point the maximal
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bounds in figure 5 are attained), and thereafter the stability bounds decrease. The
decrease occurs because ry/B decreases. The ring of yielded Bingham fluid becomes
progressively narrower and the flow rate of Bingham fluid decreases. Since the total
flow rate is conserved, the flow rate of Newtonian fluid must increase. This requires an
increased pressure drop (and note that ry/B ∝ 1/|Pz|). Eventually (and this is beyond
the Bingham number range shown in figure 5), transition to a case 3 solution occurs.
The Newtonian fluid is then flowing through a wholly unyielded annulus and ry/B be-
comes constant, i.e. the curves in figure 5 all asymptote to a constant positive value at
large B .

4. Moving Ω1

We now turn to the general problem in which the Newtonian region may move.
Our results will be derived under the assumption that for small finite perturbations
away from the axisymmetric flow and for a bounded stress perturbation satisfying
(3.13), an annular region of thickness at least h will remain about Ω1. Since there
is no deformation within the plug, the shape of the interface Γi remains circular of
radius ri , but Ω1 may move. Thus, Ω1(t) is a cylinder of radius ri , which at time
t has axis centred at xc(t) = (xc(t), yc(t), 0). We show later that the departure from
axisymmetry,

rc(t) ≡ |(xc(t), yc(t))|, (4.1)

can be bounded under suitable assumptions on the Reynolds number.
Movement of the Newtonian region represents the first complication that must

be dealt with. The second complication concerns the choice of basic flow that we
consider for the perturbation. In deriving nonlinear stability bounds, we must consider
quantities such as

∂ui

∂xj

[
τij

[k](U + u) − τij
[k](U)

]
.

If the interface between fluids moves, but a fixed basic flow is considered, it will
happen that certain points x are in fluid 1 for the perturbed flow but are in fluid 2
for the basic flow. Since there is a jump in the rheology between fluids, this presents a
problem in deriving meaningful nonlinear† stability bounds for multi-phase systems.
To circumvent this key difficulty, we consider perturbations about a basic flow solution
that is not fixed in time. Instead we consider perturbed velocity and pressure fields
of the following form:

U + u = (0, 0, W (x, y; xc(t), yc(t)) + (u, v, w), P (z; xc(t), yc(t)) + p,

where the basic flow is parameterized by (xc, yc). This particular basic flow corresponds
to the axial flow solution for a two-fluid system in which Ω1 is a circular region of
radius ri , centred at (xc, yc). We consider these solutions in depth in § 4.2. First, we
show that consideration of the flow as a perturbation about these basic flows leads
only to a minor change in the energy stability problem.

† Note that in a linear analysis this problem is not encountered. Here it is common practice
to linearize about the basic flow interface, effectively extending the basic solution on one side of
an interface into the fluid on the other side. For a nonlinear perturbation, this procedure is not
admissible.
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4.1. Derivation of the Reynolds–Orr equation

For the basic and perturbed flows, at time t the fluid domains are Ω1(t) and Ω2(t).
The following equations are satisfied in fluid k:

0 = −∂P

∂xi

+
1

Re[2]

∂

∂xj

τij
[k](U), (4.2)

0 =
∂Ui

∂xi

, (4.3)[
∂

∂t
+ (Uj + uj )

∂

∂xj

]
(Ui + ui) = − ∂

∂xi

(P + p) +
1

Re[2]

∂

∂xj

τij
[k](U + u), (4.4)

0 =
∂

∂xi

(Ui + ui). (4.5)

We note that the basic solution (U, P ) is still a full solution to the steady Navier–
Stokes equations, but is not itself steady, i.e. in the sense that xc = xc(t) and also
because strictly speaking, in considering a time-varying solution, (4.2)–(4.3) are not
really the equations of steady motion. However, even though time dependent, (U, P )
are a solution of (4.2)–(4.3) at time t .

The point xc(t) is moving with speed uc(t) = (uc(t), vc(t), 0), given by

uc(t) =
dxc

dt
(t), vc(t) =

dyc

dt
(t). (4.6)

This allows us to rewrite (4.4) as follows:[
∂

∂t
+ (Uj + uj )

∂

∂xj

]
ui + uj

∂Ui

∂xj

= − ∂

∂xi

(P + p) +
1

Re[2]

∂

∂xj

τij
[k](U + u)

− δi3[uc · ∇cW ], (4.7)

noting that Uj∂Ui/∂xj = 0. Here ∇c denotes the gradient operator, with respect to
the variables xc. We subtract (4.2) from (4.7), multiply by ui , and integrate over the
individual fluid domains, at time t . We then sum the two fluid domain Reynolds–
Orr equations, eliminating the boundary integrals, giving the following Reynolds–Orr
equation:

d

dt

∑
k

∫
Ωk

u2
i

2
dx = −

∑
k

∫
Ωk

[
uj

∂W

∂xj

+ uc · ∇cW

]
w dx

− 1

Re[2]

∑
k

∫
Ωk

∂ui

∂xj

[
τij

[k](U + u) − τij
[k](U)

]
dx. (4.8)

We note that this differs from (3.20) only in the additional terms involving [uc · ∇cW ].
These additional terms are the trade-off for ensuring that the perturbed and basic flow
regions coincide at time t . Although marginally more complex, we can still analyse
(4.8) to derive stability bounds (see § 4.3). However, this approach only makes sense
if the basic flows (U(xc, yc), P (xc, yc)) are well-defined for all values of (xc, yc), and if
also the plug region persists in these flows for sufficiently small rc.

4.2. The basic flows (W, Pz).

The basic flows (W, Pz) are defined as solutions to the axial flow problem:

Re[2] ∂P

∂z
=

∂τzx
[k]

∂x
+

∂τzy
[k]

∂y
, (x, y) ∈ Ωk, k = 1, 2, (4.9)
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where Ω1 is an infinitely long circular cylinder of radius ri , with axis centred at
(x, y) = (xc, yc). The problem is two-dimensional in the (x, y)-plane. In the Newtonian
region,

∂τzx
[1]

∂x
+

∂τzy
[1]

∂y
= m

(
∂2W

∂x2
+

∂2W

∂y2

)
,

and in the Bingham region, the constitutive laws simplify to

|∇W | = 0 ⇐⇒
[
(τzx)

[2])2 + (τzy)
[2])2

]1/2
� B, (4.10)(

τ [2]
zx , τ [2]

zy

)
=

[
1 +

B

|∇W |

]
∇W ⇐⇒

[
(τzx)

[2])2 + (τzy)
[2])2

]1/2
>B. (4.11)

No-slip conditions are satisfied at the wall: both the traction and velocity are
continuous at the interface. The axial pressure gradient is a constant, determined
by the following flow rate constraint:

π =

∫
x2+y2 < 1

W (x, y) dx dy. (4.12)

The question of existence of (W, Pz) is addressed in Frigaard & Scherzer (1998). For
each interface (i.e. here each pair (xc, yc)), there exists a unique weak solution W

for given fixed Pz. The flow rate is shown in Frigaard & Scherzer (1998) to increase
monotonically with |Pz|, and thus (4.12) can be used to find the unique pressure
gradient, Pz. Thus, for each (xc, yc) we have a unique solution (W, Pz). Since Ω1 is
a circular cylinder, these solutions will only be unique up to a rotational symmetry
about the pipe axis, i.e. they depend on rc rather than (xc, yc). If rc � 1 − ri , then Ω1

touches the pipe wall. There still exists a basic solution (W, Pz), but we are not able to
preserve an unyielded plug region surrounding Ω1. Therefore, it is immediately clear
that we must somehow bound rc in order to preserve the plug.

For rc = 0, the solution (W, Pz) corresponds to the axisymmetric flow of § 3.1. We
suppose a parameter choice such that we have a case 1 solution, (i.e. figures 1c, 3a),
so that ry is found as the solution of (3.2). The shear stress is given by τ [2]

rz = −Br/ry

and the pressure gradient is Pz(rc = 0) = −2B/(ryRe[2]). The flow is axisymmetric,
hence τθz = 0 everywhere and τ = |τ [2]

rz | = Br/ry . Thus, at the interface

τ =
Bri

ry

, (4.13)

i.e. the larger the initial annulus of unyielded fluid, the further below the yield stress
is the interfacial stress, and the more likely that the plug region is preserved.

Now consider small rc 
= 0. If the plug region is preserved then in Ω1, W satisfies

∇2W = −Re[2]

m

∂P

∂z
(rc). (4.14)

It is reasonable expect that the pressure gradient varies continuously with rc. The
boundary conditions for W in (4.14) are that W = Wp at the interface, where
Wp is the plug velocity. Thus, W − Wp satisfies Poisson’s equation with Dirichlet
boundary conditions on Ω1, for which there is a unique solution. Furthermore,
this unique solution is axisymmetric, i.e. about (xc, yc), depending only on r ′ =
[(x − xc)

2 + (y − yc)
2]1/2. Therefore, if the plug region is intact, inside the Newtonian

domain we have

τr ′z = Re[2] r

2

∂P

∂z
(rc), τθ ′z = 0,
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Figure 6. Asymmetric basic flow: B = 30, m = 2, ri = 0.4 (cf. figure 3 (a): (a) (xc, yc) =
(0.1, 0); (b) (xc, yc) = (0.2, 0); (c) (xc, yc) = (0.3, 0); (d) (xc, yc) = (0.4, 0).

where θ ′ is an azimuthal coordinate centred at (xc, yc). Continuity of stress ensures
that τr ′z is continuous at the interface r ′ = ri . Thus, if Pz varies continuously with
rc and if |τθ ′z| varies continuously from its values at rc = 0, (i.e. from zero), then
τ [2] <B at the interface for some finite range of sufficiently small rc. Thus, by simple
continuity arguments we can assert that the plug region is preserved.

In order to evaluate the limit of rc for which the plug region is preserved, it
is necessary to compute (W, Pz). For this we have used an augmented Lagrangian
approach. Such algorithms were developed approximately 20 years ago for visco-
plastic fluid flows, see Glowinski, Lions & Trémolières (1981), Fortin & Glowinski
(1983), Glowinski (1984). Although these have been occasionally used, e.g. Hoppe
et al. (1999), Huilgol & Pannizza (1995), Saramito & Roquet (2001), Vola, Boscardin &
Latché (2003), most researchers appear to currently favour using regularized
viscosity approaches. Augmented Lagrangian approaches avoid the problems of
non-differentiability of the yield stress term in the dissipation functional, by using
relaxation. In this way, they are able to compute unyielded regions correctly. Details
of the numerical method we use are in Moyers-Gonzalez & Frigaard (2003). Briefly,
we adapt the algorithm ALG2, described in Fortin & Glowinski (1983), Glowinski
(1984), in a straightforward manner to deal with the two fluids, and implement using
a finite element method with piecewise linear elements on triangles. Convergence is
tested by using the axisymmetric flow of § 3.1 as a test problem.

To illustrate the effects of increasing rc from zero, we present a sequence of solutions
with the same parameters as in figure 3(a), but for rc = 0.1, 0.2, 0.3, 0.4 (figure 6).
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We can see that the plug is still preserved in a ring around Ω1 for rc = 0.2, but
breaks before rc = 0.3, as Ω1 nears the pipe wall. Although time consuming, it would
be possible to iteratively determine the critical value of rc at which the plug first
breaks at the interface, Γi . Additionally, at each rc, one could compute the maximal
unyielded concentric annular plug width about Ω1.

4.3. Three-dimensional nonlinear stability bounds

We turn now to the analysis of (4.8), which we write as

d

dt

∑
k

∫
Ωk

u2
i

2
dx = − 1

Re[2]

∫
Ω2

∂ui

∂xj

[
τij

[2](U + u) − τij
[2](U)

]
dx (Term A),

−
∫

Ω2

[
u

∂W

∂x
+ v

∂W

∂y
+

∂W

∂xc

uc +
∂W

∂yc

vc

]
w dx (Term B),

− 1

Re[2]

∫
Ω1

∂ui

∂xj

[
τij

[1](U + u) − τij
[1](U)

]
dx (Term C),

−
∫

Ω1

[
u

∂W

∂x
+ v

∂W

∂y
+

∂W

∂xc

uc +
∂W

∂yc

vc

]
w dx (Term D),

(4.15)

and examine each of terms A–D separately. Our aim is not to establish the best
possible bounds, since this problem is complicated significantly by the asymmetric
geometry, but instead to establish that an energy stability bound exists. We then use
this to bound the departure of the flow from axisymmetry (in § 4.3.4), i.e. so that we
can restrict rc to be arbitrarily small.

4.3.1. The Bingham fluid region, Ω2(t)

We treat first the Bingham fluid region. We suppose that Ω1(t) is surrounded by
a region of Bingham fluid of finite width, within which both the basic flow and
the perturbed flow are unyielded. To formalize this, suppose that for rc < b1, all
asymmetric basic flows have a finite width of unyielded plug, see e.g. figure 7. We
now impose a bound of form (3.13) on the stress perturbations, i.e.∣∣τij

[k](U + u) − τij
[k](U)

∣∣ <b2, k = 1, 2; i, j = 1, 2, 3. (4.16)

As in § 3.2, by taking b2 suitably small, but finite, the plug will persist for the
perturbation, within a finite range. We combine these conditions, by assuming that if
rc < b1 and b2 is suitably chosen, then there exists h = h(b1, b2) > 0 such that

γ̇ij (u) = γ̇ij (U) = 0 : ∀(x, y) : ri < [(x − xc)
2 + (y − yc)

2]1/2 <ri + h. (4.17)

We denote by Ω2,p(t) this ring of unyielded plug surrounding Ω1(t), see figure 7(a).
The plug is treated as a rigid body. Since we consider an infinitely long pipe, rotational
movements of the plug region are only possible about axes that are parallel to the
z-axis. Thus, at time t , the plug motion can be described as combination of a
linear motion, say (uc, vc, wc + Wp), and a rigid body rotation about an axis through
(xc(t), yc(t), 0), parallel to the z-axis. Recall that (uc, vc) is the speed of (xc(t), yc(t)),
and here Wp denotes the speed of the plug region in the basic flow. Let

u∗ = (u∗, v∗, w∗) ≡ (uc, vc, wc) + (−(y − yc)ω̃c, (x − xc)ω̃c, 0), (4.18)
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(xc, yc) ri+h
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Ω2,p

Ω2

Ω2,p

Ω2

Figure 7. (a) Geometry of the perturbed flow; (b) definition of the domain Ω2,c .

where ω̃c(t) denotes the instantaneous rotation of the plug about the z-axis through
(xc(t), yc(t)). Thus, for any x ∈ Ω2,p(t), u∗ + U , gives exactly the perturbed velocity of
the fluid in the rigid plug and u∗ = u. Turning to term A, we proceed as before:

(Term A) = − 1

Re[2]

∫
Ω2

∂ui

∂xj

[
τij

[2](U + u) − τij
[2](U)

]
dx

� − 1

Re[2]

∫
Ω2|Ω2,p

γ̇ (u)2 dx = − 1

Re[2]

∫
Ω2

γ̇ (u)2 dx

= − 1

Re[2]

∫
Ω2

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

− 2πL(riω̃c)
2

Re[2]
. (4.19)

To derive the last line above from the second line, we have used the divergence theorem
and substituted from (4.18) to evaluate the (non-vanishing) boundary integral at Γi .
This gives rise to the rotational term above. Thus, rotation of the plug region increases
the dissipation, as might be expected.

For the inertial term B in (4.15), we note that ∂W/∂x = ∂W/∂y = 0 if x ∈ Ω2,p .
We define |∇W |2,max and |∇cW |max by

max
(x,y)∈Ω2|Ω2,p

|∇W | = |∇W |2,max, (4.20)

max
|(xc,yc)| < b; (x,y)∈Ω2|Ω2,p

|∇cW | = |∇cW |max. (4.21)

To bound uc and vc, we use (4.18) to write, for |x − xc| < (ri + h),

2uc = u
(
x, yc − ((ri + h)2 − (x − xc)

2)1/2, z
)

+ u
(
x, yc + ((ri + h)2 − (x − xc)

2)1/2, z
)
,

(4.22)

and a similar expression for vc, i.e. we use the values of u and v at opposite points
on the boundary of the unyielded plug/interface, to cancel out rotational terms in
(4.18). We now replace u with an integral of its partial derivative, integrated outwards
to the wall in the domain Ω2,c (as defined in figure 7b), i.e. for u(x, yc − ((ri + h)2 −
(x − xc)

2)1/2, z) we write

u
(
x, yc − ((ri + h)2 − (x − xc)

2)1/2, z
)

=

∫ yc−((ri+h)2−(x−xc)
2)1/2

−1−x2

∂u

∂y
(x, y, z) dy,

and an analogous expression for u(x, yc + ((ri + h)2 − (x − xc)
2)1/2, z) (integrated

upwards in the upper part of Ω2,c). We now integrate (4.22) with respect to x over the
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range |x − xc| < (ri + h), and use the above expression, to give the following bound:

2uc(ri + h)L �

∫
Ω2,c

∣∣∣∣∂u

∂y

∣∣∣∣ dx, �

∫
Ω2|Ω2,p

∣∣∣∣∂u

∂y

∣∣∣∣ dx,

� [π(1 − (ri + h)2)L]1/2

[ ∫
Ω2|Ω2,p

∣∣∣∣∂u

∂y

∣∣∣∣
2

dx
]1/2

(4.23)

(also using the Cauchy–Schwarz inequality). Similarly, we have

2vc(ri + h)L � [π(1 − (ri + h)2)L]1/2

[ ∫
Ω2|Ω2,p

∣∣∣∣∂v

∂x

∣∣∣∣
2

dx
]1/2

. (4.24)

Now let (ΛB,1, ΛB,2), be defined as follows:

(ΛB,1, ΛB,2) ≡ sup
ũ∈V̄B,0




∫
Ω2|Ω2,p

(ũ + ṽ)w̃ dx

∫
Ω2|Ω2,p

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

,

∫
Ω2

w̃2 dx

∫
Ω2

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx


 . (4.25)

The test space V̄B,0 above is the closure of VB,0, which is as defined in § 3.2.2, except
that we remove condition (f ), i.e. we allow movement of Ω1. Combining all the above
bounds, terms A and B of (4.15) satisfy

(Term A) + (Term B) �

[
AB − 1

Re[2]

] ∫
Ω2

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx − 2πL(riω̃c)
2

Re[2]
, (4.26)

where

AB = |∇W |2,maxΛB,1 +
π|∇cW |max(1 − (ri + h)2)1/2

(
1 − r2

i

)1/2
Λ

1/2
B,2√

2(ri + h)
. (4.27)

4.3.2. The Newtonian fluid region, Ω1(t)

We turn now to terms C and D in (4.15), dealing first with the dissipative term.
Consider the velocity field u′, defined by

u′ = u − u∗. (4.28)

We note the following:
(i) Since u∗ is the perturbation of the plug velocity in Ω2,p and the velocity is

continuous across the interface, at [(x − xc)
2 + (y − yc)

2]1/2 = ri , it follows that

u′ = 0, x ∈ ∂Ω1(t). (4.29)

(ii) Since u∗ consists of only a linear translation and a rigid body rotation

γ̇ij (u∗) = 0, and therefore γ̇ij (u) = γ̇ij (u′). (4.30)

Using the above, the dissipative term in (4.15) on Ω1(t) is

−(Term C) =
m

Re[2]

∫
Ω1

γ̇ (u)2 dx =
m

Re[2]

∫
Ω1

γ̇ (u′)2 dx =
m

Re[2]

∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx.

(4.31)
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We now introduce (4.28) into the inertial term in (4.15) on Ω1(t):

(Term D) = −
∫

Ω1

[
(u′ + u∗)

∂W

∂x
+ (v′ + v∗)

∂W

∂y
+

∂W

∂xc

uc +
∂W

∂yc

vc

]
(w′ + wc) dx,

and expand to give

(Term D) = −
∫

Ω1

[
u′ ∂W

∂x
+ v′ ∂W

∂y

]
w′ +

[
uc

(
∂W

∂x
+

∂W

∂xc

)
+ vc

(
∂W

∂y
+

∂W

∂yc

)]
w′ dx

−
∫

Ω1

[
(y − yc)ω̃c

∂W

∂x
− (x − xc)ω̃c

∂W

∂y

]
w′ +

[
u′ ∂W

∂x
+ v′ ∂W

∂y

]
wc dx

−
∫

Ω1

[
uc

(
∂W

∂x
+

∂W

∂xc

)
+ vc

(
∂W

∂y
+

∂W

∂yc

)]
wc dx

−
∫

Ω1

[
(y − yc)ω̃c

∂W

∂x
− (x − xc)ω̃c

∂W

∂y

]
wc dx. (4.32)

In order to bound the above expressions, we need first to find bounds for both
wc and ω̃c. At time t we define a cylindrical coordinate system (r ′, θ ′), centred at
(xc(t), yc(t)). Now wc is the perturbation of the axial component of the plug velocity,
and is constant. In terms of the (r ′, θ ′) coordinate system, the outer wall of the pipe
is denoted by r ′ = ro(θ

′). We have the following:

2πL(ri + h)wc = (ri + h)

∫ L/2

−L/2

∫ 2π

0

wc(θ
′) dθ ′dz

�

∫ L/2

−L/2

∫ 2π

0

∫ ro(θ
′)

ri+h

∣∣∣∣∂w

∂r ′

∣∣∣∣r ′ dr ′dθ ′dz =

∫
Ω2|Ω2,p

∣∣∣∣∂w

∂r ′

∣∣∣∣ dx

� [π(1 − (ri + h)2)L]1/2

[ ∫
Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx

]1/2

. (4.33)

To bound ω̃c we again use (4.18) to write, for |x − xc| < (ri + h),

2ω̃c((ri + h)2 − (x − xc)
2)1/2 = u

(
x, yc − ((ri + h)2 − (x − xc)

2)1/2, z
)

(4.34)

− u
(
x, yc + ((ri + h)2 − (x − xc)

2)1/2, z
)
, (4.35)

and we can derive an analogous expression using values of v. As before, we write
u(x, yc − ((ri + h)2 − (x − xc)

2)1/2, z) and u(x, yc + ((ri + h)2 − (x − xc)
2)1/2, z) in terms

of integrals of ∂u/∂y, and integrate (4.34) between xc ± (ri + h). Performing similar
operations with our expression involving v, and combining, we derive

|ω̃c| �
(1 − (ri + h)2)1/2

(2πL)1/2(ri + h)2

[ ∫
Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx
]1/2

; (4.36)

further details may be found in Moyers-Gonzalez (2002).
We now consider upper bounds for the individual terms in (4.32). We first note

that if Ω1 is surrounded by a region of unyielded Bingham fluid, then the basic flow
W is such that W = W (r ′), and furthermore, for x ∈ Ω1,

W (r ′) = WN,max

[
1 −

(
r ′

ri

)2]
+ Wp =⇒

∣∣∣∣dW

dr ′

∣∣∣∣ =
2WN,max

r2
i

r ′.



Visco-plastic lubrication of viscous shear flows 139

Now let ΛN = (ΛN,1, ΛN,2, ΛN,3, ΛN,4), be defined as follows:

ΛN ≡ sup
ũ∈V̄N,0




∫
Ω1

r ′ũr ′w̃ dx

∫
Ω1

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

,

∫
Ω1

[r ′w̃]2 dx

∫
Ω1

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

,

∫
Ω1

w̃2 dx

∫
Ω1

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx

,

∫
Ω1

[r ′ũr ′]2 dx

∫
Ω1

∣∣∣∣ ∂ũi

∂xj

∣∣∣∣
2

dx


 , (4.37)

where ũr ′ is the radial component of ũ, i.e. in the direction of r ′. The test space V̄N,0

above is as defined previously. Finally, we have for (4.32)

(Term D) �
2WN,maxΛN,1

r2
i

∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx +

[
πWN,max[2ΛN,2(1 − (ri + h)2)]1/2

ri(ri + h)

+
π|∇cW |maxri[2ΛN,3(1 − (ri + h)2)]1/2

ri + h
+

WN,max[ΛN,4(1 − (ri + h)2)]1/2

ri(ri + h)

]

×
[ ∫

Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx
]1/2[ ∫

Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx
]1/2

+

[
πriWN,max(1 − (ri + h)2)

3
√

2(ri + h)2
+

πr2
i |∇cW |max(1 − (ri + h)2)

2
√

2(ri + h)2

]

×
∫

Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx. (4.38)

We now combine the above bounds for terms C and D in (4.15):

(Term C) + (Term D) � AN

∫
Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx + CN

∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx

+ 2BN

[ ∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx
]1/2[ ∫

Ω2|Ω2,p

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx
]1/2

− m

Re[2]

∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx (4.39)

� (AN + BN )

∫
Ω2

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx +

(
BN + CN − m

Re[2]

)∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx,

(4.40)

where AN , BN and CN are the positive parameters

AN =
πr2

i (1 − (ri + h)2)√
2(ri + h)2

[
WN,max

3ri

+
|∇cW |max

2

]
, (4.41)

BN =
π(1 − (ri + h)2)1/2

√
2ri(ri + h)

[
WN,maxΛ

1/2
N,2 + |∇cW |maxr

2
i Λ

1/2
N,3 + WN,max[2ΛN,4]

1/2
]
,

(4.42)

CN =
2WN,maxΛN,1

r2
i

; (4.43)

further details may be found in Moyers-Gonzalez (2002).
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4.3.3. The stability bound

We combine (4.15) with the bounds (4.26) and (4.40):

1

2

d

dt

∫
Ω

u2 dx �

(
AN + BN + AB − 1

Re[2]

)∫
Ω2

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
2

dx − 2πL(riω̃c)
2

Re[2]

+

(
BN + CN − m

Re[2]

) ∫
Ω1

∣∣∣∣ ∂u′
i

∂xj

∣∣∣∣
2

dx. (4.44)

Suppose the following condition holds, (for nonlinear stability):

Re[2] < min

{
1

AN + BN + AB

,
m

BN + CN

}
. (4.45)

Assuming (4.45), we ignore the (ω̃c)
2 term in (4.44) and have

1

2

d

dt

∫
Ω

u2 dx �−λ

∫
Ω

γ̇ (u)2 dx

�−cλ

∫
Ω

u2 dx, (4.46)

where

λ = min

{(
1

Re[2]
− AN − BN − AB

)
,

(
m

Re[2]
− BN − CN

)}
. (4.47)

In deriving (4.46) we have used Korn’s inequality on Ω (see e.g. Duvaut & Lions
1976, p. 110), with c the resulting constant. Hence, under the condition (4.45), the
following energy stability bound holds for the decay of ‖u‖2

L2(Ω)(t):

‖u‖2
L2(Ω)(t) � ‖u‖2

L2(Ω)(0) exp−2cλt . (4.48)

Note precisely what this means. When ‖u‖2
L2(Ω)(t) → 0 the perturbation decays to

zero, but we have perturbed about an asymmetric basic flow, i.e. the perturbed flow
does not decay to the axisymmetric basic flow, but instead to a different basic flow,
which is in fact unknown. It remains to see if this asymmetric basic flow is close to
the axisymmetric flow. For this we consider how large rc(t) may become when (4.45)
holds.

4.3.4. A bound for rc

We have assumed throughout that rc < b1, which we now verify can be satisfied for
arbitrary b1 > 0. First note that, for an initially concentric interface, (xc, yc) satisfy the
following initial value problem:

d

dt
(xc, yc) = (uc, vc), (xc, yc)(0) = (0, 0). (4.49)

To bound uc and vc, we use (4.18) again, and note that for any r ′ ∈ (ri, ri + h)

2uc = u
(
x, yc − ((r ′)2 − (x − xc)

2)1/2, z
)

+ u
(
x, yc + ((r ′)2 − (x − xc)

2)1/2, z
)
, (4.50)

for |x − xc| <r ′ (and similarly for vc). On integrating over Ω2,p and using (4.48)

ucLπ
[
(ri + h)2 − r2

i

]
=

∫
Ω2,p

udx �
(
Lπ

[
(ri + h)2 − r2

i

])1/2

[∫
Ω

u2dx
]1/2

,

|uc|(t) �
‖u‖L2(Ω)(0)(

Lπ
[
(ri + h)2 − r2

i

])1/2
exp−cλt , (4.51)
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with the identical bound for |vc|(t). We now integrate (4.49) with respect to t and use
the bounds on |uc|(t) and |vc|(t), to give

|xc|(t) �

∫ ∞

0

|uc|(t)dt �
‖u‖L2(Ω)(0)

cλ(Lπ[(ri + h)2 − r2
i ])

1/2
, |yc|(t) �

‖u‖L2(Ω)(0)

cλ(Lπ[(ri + h)2 − r2
i ])

1/2
.

(4.52)

Thus, finally we have

rc(t) = |(xc, yc)|(t) �

√
2‖u‖L2(Ω)(0)

cλ
(
Lπ

[
(ri + h)2 − r2

i

])1/2
∀t � 0. (4.53)

Thus, by choosing ‖u‖L2(Ω)(0) sufficiently small we can ensure that rc < b1, for arbitrary
small finite b1. Note too that an initial bound on ‖u‖L2(Ω)(0) is achieved by taking b2

sufficiently small in (4.16), i.e. bounding the stress perturbation bounds the integral
of γ̇ (u)2, which via Korn’s inequality bounds ‖u‖L2(Ω)(0).

4.3.5. Evaluation of the parameters contributing to the stability bounds

Whereas it was fairly easy in § 3.3 to understand the variations in stability with
the parameters that define the basic flow, here it is much harder. Since we consider
only bounded rc < b, and our basic solutions depend on (xc, yc), B , m, and ri , we may
assume that the constants |∇W |2,max , |∇cW |max , WN,max are well defined provided that
W (x, y; xc, yc) is differentiable with respect to each of the above parameters, which
is reasonable. It is a large computational task to determine the parametric variation
of each of these constants with each parameter describing the basic flow. From the
computations that we have performed, WN,max appears to increase with both B and
ri , but decreases with m, and is bounded above. The parameter |∇W |2,max is generally
O(1). To compute |∇cW |max is very time consuming and we have not attempted this.
We note however that W = O(1), since the velocity is scaled with the mean value and
the flow rate constraint is always satisfied. Thus, changing (xc, yc) will simply increase
W in some parts of the domain whilst decreasing W in other parts. It is therefore
assumed that |∇cW |max is numerically of O(1) and fairly insensitive to changes in B ,
m, and ri .

Constants such as ΛB,1 and ΛB,2 can be computed as the smallest positive eigen-
values of an eigenvalue problem, via the Euler–Lagrange equations for the different
minimization problems. In the case that (xc, yc) = (0, 0), for all t (i.e. the Newtonian
region does not move), we have already considered the much simpler problem and
derived approximate bounds (see § 3.2.2). In general, it is hard to progress with sharp
bounds for ΛB,1 and ΛB,2 when the asymmetric case is considered, due to the shape
of Ω2|Ω2,p and the large number of parameters involved in a computational study.
However, we can at least establish that ΛB,1 and ΛB,2 are well defined, as follows. We
know that

|w| �

∫ r ′
w(θ ′)

Ri+h

∣∣∣∣∂w

∂r ′

∣∣∣∣ dr ′ �
1

(Ri + h)1/2

∫ r ′
w(θ ′)

Ri+h

r ′1/2
∣∣∣∣∂w

∂r ′

∣∣∣∣ dr ′, (4.54)

where r ′
w(θ ′) denotes the radial distance to the pipe wall from (xc, yc). Now,∫

Ω2|Ω2,p

w2dx �

∫ ∫ ∫ r ′
w(θ ′)

Ri+h

r ′
w(θ ′)

(Ri + h)

[ ∫ r ′
w(θ ′)

Ri+h

r ′′1/2

∣∣∣∣ ∂w

∂r ′′

∣∣∣∣ dr ′′
]2

dr ′dθ ′dz.
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Using the Cauchy–Schwarz inequality we get∫
Ω2|Ω2,p

w2dx �

∫ ∫
2 − (Ri + h)

(Ri + h)
[r ′

w(θ ′) − (Ri + h)]2
∫ r ′

w(θ ′)

Ri+h

r ′′
(∣∣∣∣ ∂w

∂r ′′

∣∣∣∣
)2

dr ′′dθ ′dz.

Applying the mean value theorem for integrals,∫
Ω2|Ω2,p

w2dx �
2 − (Ri + h)

(Ri + h)
[r ′

w(θ ′∗) − (Ri + h)]2
∫

Ω2|Ω2,p

(∣∣∣∣ ∂w

∂r ′′

∣∣∣∣
)2

dx,

but ∫
Ω2|Ω2,p

(∣∣∣∣ ∂ui

∂xj

∣∣∣∣
)2

dx �

∫
Ω2|Ω2,p

(∣∣∣∣ ∂w

∂r ′′

∣∣∣∣
)2

dx. (4.55)

Therefore, we have that

ΛB,2 �
2 − (Ri + h)

(Ri + h)
[r ′

w(θ ′∗) − (Ri + h)]2. (4.56)

Similarly, for ΛB,1 we can derive

ΛB,1 �

∫
Ω2|Ω2,p

(u + v)w dx

∫
Ω2|Ω2,p

(∣∣∣∣ ∂ui

∂xj

∣∣∣∣
)2

dx

� 2

(
2 − (Ri + h)

(Ri + h)
[r ′

w(θ ′∗) − (Ri + h)]2
)

. (4.57)

This establishes that ΛB,1 and ΛB,2 are well-defined. Our bounds are very conservative.
Estimates for ΛN,1, ΛN,2, ΛN,3, ΛN,4 are much easier due to the circular domain

and homogeneous Dirichlet conditions. Again each parameter can be defined via an
eigenvalue problem for a different set of Euler–Lagrange equations, which could be
solved computationally. Instead, here we just establish that these bounds exist and
then give an upper estimate for the bounds. For simplicity we map the Newtonian
region into the unit circle, which simplifies the dependence on ri . The bound for ΛN,1

is due to Joseph & Carmi (1969):

ΛN,1 �
r3
i

81.49
, (4.58)

and believed to be exact. For ΛN,2, ΛN,3, ΛN,4, we simply relax the constraints in the
definition of these bounds, as follows:

(ΛN,2, ΛN,3, ΛN,4) � sup
ũ∈V̄N,0




∫
Ω1

[r ′w̃]2 dx

∫
Ω1

∣∣∣∣∂w̃

∂r

∣∣∣∣
2

dx

,

∫
Ω1

w̃2 dx

∫
Ω1

∣∣∣∣∂w̃

∂r

∣∣∣∣
2

dx

,

∫
Ω1

[r ′ũr ′]2 dx

∫
Ω1

∣∣∣∣∂ũr ′

∂r

∣∣∣∣
2

dx


 . (4.59)

Note that, by eliminating the additional terms in the denominators, we are effectively
throwing away the divergence-free condition, but can now deal with decoupled
problems, the solutions of which involve the least positive roots of the Bessel function
of zeroth order, J0 (details are omitted):

(ΛN,2, ΛN,3, ΛN,4) �

(
r4
i

23.13275
,

r2
i

5.78319
,

r4
i

23.13275

)
. (4.60)

These bounds for ΛN,2, ΛN,3, ΛN,4 are also likely to be fairly conservative.
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5. Conclusions
In this paper we have considered the nonlinear stability of a multi-layer shear

flow, and established stability bounds under quite general conditions. These are the
only results of this type that we know of, and this seems to be promising as a
practical method for establishing multi-layer flows in industrial applications. In this
context, the next step is clearly to provide an experimental demonstration, and for
this purpose an apparatus is already under construction. If we consider flows with
a static wall layer (e.g. figure 3(c), stable displacement flows are reported in Gabard
(2001), Gabard & Hulin (2003). In these experiments a yield stress fluid (Carbopol)
initially occupies a circular tube. It is displaced by injecting a purely viscous fluid,
which forms a stable finger in the centre of the tube, leaving the yield stress fluid at
rest on the walls. Consequently, we are reasonably confident that we can achieve in
practice the multi-layer flows that we have investigated here.

In § 3 we have shown that our method can yield stable Reynolds numbers of
the same order as found in nonlinear stability studies of Newtonian fluids. Such
methods are known to be fairly conservative and it is likely that significantly larger
Reynolds numbers will also be nonlinearly stable. The limitation of the results in § 3
is that the stress perturbations must be assumed to be axisymmetric, which occurs in
perturbations that are close to being linear. In any practical application one would
attempt to avoid asymmetries in the flow and suppress initial perturbations as far as
possible, i.e. one would not want the Newtonian region to hit the wall of the pipe.
Thus, the best possible bounds that we are likely to achieve in practice are those
associated with the axisymmetric flow in § 3. In deriving the more general bounds in
§ 4, the complexity becomes prohibitive and we are forced to make many conservative
assumptions. Thus, numerical values of the Reynolds numbers required for stability
are typically O(1). However, we would expect bounds on stability to be continuous
with the axisymmetric stability bounds as the departure from asymmetry approaches
zero. Hence, the problem to study further in order to improve the bounds is the
simpler problem in § 3. The value of the analysis in § 4 is simply to show that, even
without symmetry, nonlinear stability bounds can be derived.

The methodology that we have used in § 4 is perhaps of independent interest. Our
problem is one of relatively few non-trivial multi-fluid flows for which energy stability
bounds have been successfully employed, and it is worthwhile outlining those features
of our analysis which have allowed this.

(i) We assume throughout that there is a conditional bound on the stress
perturbation. The origin of this idea is in Frigaard (2001) and in Nouar & Frigaard
(2001). Here it serves two purposes. First it allows the elimination of interfacial
instabilities, since the interface can move but not deform, cf. Frigaard (2001). Second,
it allows the derivation of stability bounds on a restricted domain, cf. Nouar &
Frigaard (2001), which is how the Bingham number enters into the analysis, and the
eventual stability bounds. These ideas are specific to a visco-plastic fluid.

(ii) We perturb about an arbitrary asymmetric basic flow. This idea is not specific
to a visco-plastic fluid and could be used elsewhere, although we are unaware of
its application to other problems. To make absolutely transparent the value of this,
consider two Newtonian fluids in a nonlinear stability analysis. If we fix the basic
flow and allow that in certain regions the fluid type of basic and perturbed flows may
change, then the dissipative terms contain contributions such as

− 1
2

[
τij

[1](U + u) − τij
[2](U)

]
γ̇ij (u) = −µ[1]γ̇ 2(u) −

(
µ[1] − µ[2]

)
1
2
γ̇ij (U)γ̇ij (u).
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Although the first term on the right-hand side above is negative (i.e. dissipative) the
second term could be positive or negative; similar problems arise with the indices
reversed. This is a significant problem with the straightforward application of energy
methods to multi-fluid problems. Use of our method would not be generally applicable.
Typically, for a given interface projection onto the (x, y)-plane, one can find an axial
solution to the multi-fluid problem. However, for purely viscous fluids this becomes
less relevant since the entire interface deforms. The yield stress allows the structure
of the flow to be preserved.

(iii) We allow movement of the fluid regions, but then derive a bound for that
movement. This too is facilitated by the fluids having a yield stress. The plug velocity
has a relatively simple description which can be related to the motion of the Newtonian
region. Thus, our energy bound allows us to bound the movement of Ω1. This part of
our methodology might be applicable to certain two-phase fluid–solid problems. One
analogy would be to consider, for example, an iso-density solid immersed in the plug
region of a Bingham fluid Hagen–Poiseuille flow. Since visco-plastic suspensions are
often used for the transport of particles (e.g. in rock cuttings transported by drilling
mud in the oil industry, coal–water slurries, etc.), such studies may have practical
value.

Our future work in this area is undecided, since there are a number of interesting
avenues for exploration. Experimentally, we are working towards a demonstration of
these flows and then an experimental study, which we hope to report. We are also
interested in extensions of the methodology that we have introduced. In this context,
more realistic visco-plastic fluids and the inclusion of small density differences are of
primary interest, practically speaking. More broadly, many complex fluids are both
visco-elastic and visco-plastic. We might consider whether the inherent stability of
our visco-plastically lubricated flow could be used to compensate for certain of the
visco-elastic instabilities commonly observed. Eventually, this might be the area of
primary application of this type of flow.
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